

Institute of Energy and mechanical **Department** of Energy

EDUCATIONAL PROGRAM

7M07113 – Electrical Engineering and power engineering

Code and classification of the field of education: 7M07 Engineering, manufacturing and construction industries

Code and classification of training areas: 7M071 Engineering and Engineering affairs

Group of educational programs: M099 - Energy and electrical engineering

NRK Level: **Level 7** ORC Level: **Level 7**

Duration of study: **2 years**Volume of credits: **120 ECTS**

Educational program 7M07113 «Electrical engineering and power engineering» was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Minutes # 12 dated «22» 04 2024.

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council

Minutes # 06 dated «19» 04 2024.

Educational program <u>7M07113 «Electrical engineering and power engineering»</u> was developed by Academic committee based on direction «Engineering and Engineering»

Full name	Academic degree/ academic title	Post	Place of work	Signature		
Chairman of the	Academic Committee:					
Yelemessov Kassym	Candidate of Technical Sciences, Professor	Director of the Institute of Energy and Mechanical Engineering – Chairman of the Academic Committee				
Teaching staff:						
Sarsenbayev Yerlan	Doctor of Philosophy PhD	Head of the Department, Associate Professor	Kazakh National Research Technical University named after K.I.Satpayev, NCJS, mobile phone: +77053157262			
Hidolda Yerkin	Candidate of Technical Sciences	Associate Professor	Kazakh National Research Technical University named after K.I.Satpayev, NCJS, mobile phone: +77021120211	1		
Employers:						
Abdikalykov Galymzhan		General manager	Lighting Technologies Kazakhstan LLP, mobile phone: +77012252638	food		

Students:		7.1
Danko Igor	student	Kazakh National Research Technical University named after K.I.Satpayev, NCJS, mobile phone: +77053184203

Table of contents

List of abbreviations and designations

- 1. Description of the educational program
- 2. The purpose and objectives of the educational program
- 3. Requirements for the evaluation of the learning outcomes of the educational program
 - 4. Passport of the educational program
 - 4.1. General information
- 4.2. The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines
 - 5. Curriculum of the educational program

List of abbreviations and designations

EP – educational program

BC – basic competencies

PC – professional competencies

LO – learning outcomes

MOOC – massive open online courses

NQF – National Qualifications Framework

IQF – Industry Qualifications Framework

1. Description of the educational program

The professional activity of graduates of the program is directed in the field of electric power, thermal power engineering and electrical engineering.

The direction of the specialty and specialization program covers engineering and engineering.

The purpose of the Master's educational program "Electrical Engineering and Power Engineering" is to train scientific and scientific-pedagogical personnel with relevant professional knowledge and practical skills in the field of electric power industry, capable of solving problems of improving society, economy, production, science and education. The Master of Technical Sciences in the educational program "Electrical Engineering and Power Engineering" must have competencies in accordance with the types of professional activity:

- to search, analyze and process information to solve the set scientific and production tasks;
- demonstrate the ability to plan and conduct experiments, interpret the data obtained and draw conclusions;
- use modern information technologies to solve applied problems;
- to choose analytical and numerical methods in the development of mathematical models of electrical installations and systems, technological processes in the electric power industry;
- demonstrate knowledge for the analysis and synthesis of automatic control systems in the electric power industry;
- demonstrate scientific and mathematical principles of reliability of technical systems;
- know the methods of calculation and selection of power energy converters and conversion equipment;
- choose methods for calculating relay protection devices and analyze the reliability of their operation;
- know the methods of calculation and selection of elements of an automated electric drive:
- use modern systems and methods of electromechanical conversion

The educational program "Electrical Engineering and Power Engineering" provides training for masters in the following activities: Design and engineering activities

- the ability to compose and develop various simulation models and electrical circuits:
- knowledge to carry out technological and electric power calculations, to choose electrical and electromechanical equipment.

Design and technological activities

- -the ability to justify the effective operating parameters and indicators of the electric power system;
- knowledge to develop energy-efficient, resource-saving technologies and measures to protect the environment;
- skills to make a business plan for a technological project.

Research activities

- the ability to conduct a literary and patent search;
- ability to plan and conduct research; the ability to analyze and summarize the results of the study;
- skills to make reports and conclusions, publish research results;

Organizational and managerial activities

- the ability to organize the activities of the team, make work plans and set tasks; the ability to carry out activities for the organization of production, develop and compile the necessary documentation;
- ability to solve logistical issues and control the execution of tasks.

2. The purpose and objectives of the educational program

The purpose of the Master's educational program "Electrical Engineering and Power Engineering" is to train scientific and scientific-pedagogical personnel with relevant professional knowledge and practical skills in the field of electric power industry, capable of solving problems of improving society, economy, production, science and education.

Tasks of the OP: Based on the achievements of modern science, technology and production, to give knowledge and skills in the field of: - production of electric energy and substations; - electric power networks and systems; - power supply of enterprises; - automated electric drive; - relay protection and automation of electric power systems; - renewable energy. In case of successful completion of the full Master's degree course, the graduate is awarded the academic degree "Master of Technical Sciences in the field of Electric Power Engineering". The Master's degree program "Electrical Engineering and Power Engineering" differs from the existing educational program in the specialty 6M071800 – "Electric Power Engineering" by updating the internal content of the disciplines. The Master's degree program provides for further deepening of the competencies acquired in the bachelor's degree. In this connection, modern innovative disciplines have been introduced into the program:

-energy management system according to international standards;

- modern high voltage equipment;
- modeling of elements of electric power systems;
- management of the energy complex and regulation of the energy sector;
- theory and practice of technical experiment in EE;
- digital electric drive control systems;
- emergency and technological automation of power systems;
- special and special automatic control systems in EE.

In the process of mastering the educational program, the Master of Technical Sciences in the field of electric power engineering must acquire the following key competencies:

- to search, analyze and process information to solve the set scientific and production tasks;
- demonstrate the ability to plan and conduct experiments, interpret the data obtained and draw conclusions;
- use modern information technologies to solve applied problems;
- to choose analytical and numerical methods in the development of mathematical models of electrical installations and systems, technological processes in the electric power industry;
- demonstrate knowledge for the analysis and synthesis of automatic control systems in the electric power industry;
- demonstrate scientific and mathematical principles of reliability of technical systems;
- know the methods of calculation and selection of power energy converters and conversion equipment;
- choose methods for calculating relay protection devices and analyze the reliability of their operation;
- know

develop plans for the organization of innovative activities at the enterprise;

- assess innovation and technological risks when introducing new technologies;
- to know the principles of operation and specifics of emergency and technological automation of power systems;
- have practical skills in maintenance, repair and diagnostics of industrial digital electric drive control systems;
- demonstrate the ability to choose and use methods and methods of optimizing power grids;
- possess the ability to install, test, adjust and put into operation electric power and electrical equipment;
- organize and carry out the operation, repair and maintenance of industrial electrical installations;
- know the methods of overvoltage protection, insulation testing methods and operating principles of test installations;
- know the types of high-voltage electrical technologies used;
- be able to use methods of modeling electrical installations and electrical systems. Obr

the ability to compose and develop various simulation models and electrical circuits;

- knowledge to carry out technological and electric power calculations, to choose electrical and electromechanical equipment;

Design and technological activities - the ability to justify the effective operating parameters and indicators of the electric power system;

- knowledge to develop energy-efficient, resource-saving technologies and measures to protect the environment;
- skills to make a business plan for a technological project;

Research activities - the ability to conduct a literary and patent search;

- ability to plan and conduct research;
- the ability to analyze and summarize the results of the study;
- skills to make reports and conclusions, publish research results;

Organizational and managerial activities

- the ability to organize the activities of the team, make work plans and set tasks;
- the ability to carry out activities for the organization of production, develop and compile the necessary documentation;
 - ability to solve logistical issues and control the execution of tasks.

3. Requirements for the evaluation of the learning outcomes of the educational program

The previous level of education of applicants is higher professional education (bachelor's degree). The applicant must have a diploma of the established sample and confirm the level of knowledge of the English language with a certificate or diplomas of the established sample. The procedure for admission of citizens to the magistracy is established in accordance with the "Standard rules for admission to training in educational organizations implementing educational programs of postgraduate education".

The formation of a contingent of undergraduates is carried out by placing a state educational order for the training of scientific and pedagogical personnel, as well as paying for training at the expense of citizens' own funds and other sources. The State provides citizens of the Republic of Kazakhstan with the right to receive free postgraduate education on a competitive basis in accordance with the state educational order, if they receive education of this level for the first time. At the "entrance", a master's student must have everything

Special requirements for admission to the program apply to graduates of related educational programs: heat power engineering, automation and management.

Code	Type of	Description of	Competence result	Ответствен					
	competence	competence		-ный					
	Common								
	(Implies full traini	ing with possible additional de	epending on the level of know	(ledge)					
G1	Communication	Fluent monolingual oral, written and communication skills - ability of non-fluent communication with a second language - The ability to use communicative	Complete 4-year training with the development of at least 240 academic credits (including 120 contact classroom academic credits) with the possible transfer of credits in the second language where	Department of Kazakh and Russian Language, Department of English					

			. 1 . 1	
		communication in various situations - there are basics of academic writing in the native language - diagnostic test for language level	students have an advanced level. The language level is determined by passing a diagnostic test	
G2	Mathematical literacy	- Basic mathematical thinking at the communication level - ability to solve situational problems based on the mathematical apparatus of algebra and the principles of mathematical analysis - diagnostic test for mathematical literacy in algebra	Complete 4-year training with the development of at least 240 academic credits (including 120 contact classroom academic credits). With a positive diagnostic test, the level of mathematics is 1, with a negative one – the level of algebra and the beginning of analysis	Mathematic al literacy
G3	G3 Basic literacy in natural sciences - basic understanding of the scientific picture of the world with an understanding of the essence of the basic laws of science - understanding of basic hypotheses, laws, methods, formulation of conclusions and estimation of errors		Complete 4-year training with the development of at least 240 academic credits (including 120 contact classroom academic credits). With a positive diagnostic test, the level of Physics 1, General Chemistry, with a negative – the level of the Beginning of physics and the Basic basics of chemistry	Departments in the areas of natural sciences
		SPECIFIC ue to credit transfer, depending		
	raduates of 12-year so	chools, colleges, universities, inc	cluding humanitarian and econor	
S1 S2	Communication	- Fluent bilingual oral, written and communication skills - ability of non-fluent communication with a third language - skills of writing text of various styles and genres - skills of deep understanding and interpretation of one's own work of a certain level of complexity (essay) - basic aesthetic and theoretical literacy as a condition for full-fledged perception, interpretation of the original text	Full credit transfer by language (Kazakh and Russian) Transfer of credits in the	Department of Kazakh and Russian Language
82	Mathematical literacy	thinking using induction and deduction, generalization and concretization, analysis and synthesis, classification and systematization, abstraction and analogy - the ability to formulate, justify and prove	discipline of Mathematics (Calculus) I	Department of Mathematic s

		provisions - application of general mathematical concepts, formulas and extended spatial perception for mathematical problems - complete understanding of the basics of mathematical		
S3	Special literacy in natural sciences (Physics, Chemistry, Biology and Geography)	analysis - A broad scientific perception of the world, assuming an understanding of natural phenomena - critical perception for understanding the phenomena of the surrounding world - cognitive abilities to formulate a scientific understanding of the forms of existence of matter, its interaction in nature	Transfer of credits in Physics I, General Chemistry, General Biology, Introduction to Geology, Introduction to Geodesy; Educational practice, etc.	Department s in the areas of natural sciences
S4	English language	- readiness for further self- study in English in various fields - readiness to gain experience in project and research work using English	Transfer of English language credits above academic to professional level (up to 15 credits)	Department of English
S5	Computer skills	- Базовые навыки программирования на одном современном языке - использование программного обеспечения и приложений для преподавания различных дисциплин	Transfer of credits in the discipline Introduction to information and communication technologies, Information and communication technologies	Department of Software Engineering
S6	Socio- humanitarian competencies and behavior	- understanding and awareness of the responsibility of each citizen for the development of the country and the world - the ability to discuss ethical and moral aspects in society, culture and science	Transfer of credits in the Modern history of Kazakhstan (with the exception of the state exam)	Department of Social Disciplines
		- critical understanding and capacity for polemics for debating on modern scientific hypotheses and theories PROFESSION	Transfer of credits in philosophy and other humanities	

	(implies reduced training due to credit transfer, depending on the level of knowledge on competencies for graduates of colleges, secondary schools, universities)								
P1	Professional competencies	- critical perception and deep understanding of professional competencies at level 5 or 6 - the ability to discuss and polemize on professional issues within the framework of the mastered program	Transfer of credits in basic professional disciplines, including introduction to the specialty, engineering ethics, technology of robotic production, technological automation facilities, theoretical foundations of electrical engineering, technological measurements and instruments, mathematical foundations of control theory, electronic automation devices.	Department					
P2	General engineering competencies	- basic general engineering skills and knowledge, the ability to solve general engineering tasks and problems - be able to use application software packages for processing experimental data, solving systems of algebraic and differential equations	Transfer of credits in general engineering disciplines (engineering graphics, descriptive geometry, fundamentals of electrical engineering, fundamentals of microelectronics.)	Graduating Department					
P3	Engineering and computer competencies	- basic skills of using computer programs and software systems to solve general engineering tasks	Transfer of credits in the discipline of computer graphics, computer modeling and programming in the MatLab environment.	Graduating Department					
P4	Socio-economic competencies	- critical understanding and cognitive ability to reason on contemporary social and economic issues - basic understanding of the economic assessment of the objects of study and the profitability of projects.	Transfer of credits in socio-humanitarian and technical-economic disciplines to the credit of the elective cycle	Graduating Department					

The university may refuse to transfer credits if the low diagnostic level is confirmed or the final grades for completed disciplines were lower than A and B.

4. Passport of the educational program

4.1. General information

No	Field name	Note							
1	Code and classification of the field of	7M07 Engineering, manufacturing and construction							
	education	industries							
2	Code and classification of training areas	7M071 Engineering and Engineering affairs							
3	Group of educational programs	M099 Energy and electrical engineering							
4	Name of the educational program	7M07113 - Electrical engineering and power							
		engineering							
	Brief description of the educational program								
		- ability to solve logistical issues and control the execution of tasks							
6	Purpose of the OP	The purpose of the Master's educational program "Electrical Engineering and Power Engineering" is to train scientific and scientific-pedagogical personnel with relevant professional knowledge and practical skills in the field of electric power industry, capable of solving							

		problems of improving society, economy,
		production, science and education.
7	Type of OP	Current
	The level of the NRK	7 level
_	ORC Level	7 level
10	Distinctive features of the OP	No
9	ORC Level	7 level No
12	Learning outcomes of the educational program:	academic degree "Master" Master of Technical Sciences in the
	<u> </u>	direction. A graduate who has mastered master's degree

programs must have the following general professional competencies:

- the ability to independently acquire, comprehend, structure and use new knowledge and skills in professional activities, develop their innovative abilities;
- the ability to independently formulate research goals, establish the sequence of solving professional tasks;
- the ability to apply in practice the knowledge of fundamental and applied sections of disciplines that determine the orientation (profile) of the master's degree program;
- the ability to professionally choose and creatively use modern scientific and technical equipment to solve scientific and practical problems;
- the ability to critically analyze, present, defend, discuss and disseminate the results of their professional activities; proficiency in the preparation and execution of scientific and technical documentation, scientific reports, reviews, reports and articles:
- willingness to lead a team in the field of their professional activities, tolerantly perceiving social
- A graduate who has mastered the master's degree program must have professional competencies corresponding to the types of professional activities that the master's degree program is focused on: research activity:
- the ability to form diagnostic solutions to professional problems by integrating fundamental sections of sciences and specialized knowledge acquired during the development of the master's degree program;
- the ability to independently conduct scientific experiments and research in the professional field, generalize and analyze experimental information, draw conclusions, formulate conclusions and recommendations;
- the ability to create and explore models of the studied objects based on the use of in-depth theoretical and practical knowledge in the field of production, transmission and consumption of electrical energy;

scientific and production activity: - the ability to independently carry out production and scientific and production field, laboratory and interpretive work in solving practical problems;

- the ability to professionally operate modern field and laboratory equipment and devices in the field of the master's degree program;
- the ability to use modern methods of processing and interpreting complex information to solve production problems; project activity:
- the ability to independently draw up and submit projects of research and scientific-production works;
- readiness to design complex research and scientificproduction works in solving professional tasks;

organizational and managerial activity: - readiness to use practical skills of organization and management of research and scientific-production works in solving professional tasks;

- readiness for the practical use of normative documents in the planning and organization of scientific and production work; scientific and pedagogical activity:
- ability to conduct seminars, laboratory and practical classes; – the ability to participate in the management of scientific and educational work of students in the field of production, transmission and consumption of electric energy.

	When developing a master's degree program, all general cultural and general professional competencies, as well as professional competencies related to those types of professional activities that the master's program focuses on, are included in the set of required results of mastering the master's program. Mandatory standard requirements for completing the Master's degree and awarding the academic degree of Master of Technical Sciences: mastering at least 59 academic credits of theoretical training, passing the state exam in the specialty, preparation and defense of the final dissertation work before the SAC. Special requirements for completing a master's degree in this program, the graduate must know: - methods of construction of modern electric power and electromechanical systems; - current trends in the development of electrical equipment and electrical installations, technical means and automation systems of electric power facilities; - standards and industry rules, methodological and regulatory materials accompanying the operation, installation, commissioning and design of electric power systems; be able to: - develop and research traditional and autonomous electric power systems using modern technical and technological means.
13 Form of training	Daytime
14 Duration of training	2 years
15 Volume of loans	120 ECTS
16 Languages of instruction	state, Russian
17 Academic degree awarded	Master of Technical Sciences in OP "7M07113 - Electrical Engineering and Power Engineering"
18 Developer(s) and authors:	Sarsenbaev E.A., Khidolda Y.

	KK1
PO1	Demonstrates knowledge of society as an integral system and of man. Knows the role of spiritual processes in modern society, the legal interests of the parties in the sphere of protecting the rights of individuals and legal entities. Has an understanding of the economic and social conditions for carrying out entrepreneurial activity, the impact of harmful and dangerous factors on man and the natural environment.
PO2	Possesses basic knowledge in the field of natural sciences, which helps to solve professional problems in the field of energy and to form a highly educated individual with a broad outlook.
PO3	Can use tables and diagrams. Has knowledge of modern methods and devices for monitoring and accounting of electricity. Knows modern and promising directions of development of energy systems, principles of operation, technical characteristics and design features of energy installations being developed and used.
PO4	Expands and systematizes the knowledge gained during the study of the module's disciplines. Gains experience in reading and constructing various types of diagrams.
PO5	Applies methods of calculating electrical systems. Conducts electrical calculations of industrial electrical equipment. Analyzes operating modes of electrical systems, applies methods of their study.
PO6	Implements innovative approaches into practical activities to achieve specific results in the energy sector. Independently processes and makes the right decision when creating or mastering new technologies and materials.
PO7	Uses knowledge of basic disciplines to understand the physical nature of processes occurring in the main and auxiliary equipment of electric power systems.
PO8	Demonstrates ability to design systems, system components or processes to achieve a desired outcome, taking into account real-world constraints (cost effectiveness, environmental and social impact, ethics, health and safety, manufacturability and sustainability).
PO9	Has knowledge of design, calculation and regulation methods for energy production and distribution systems, applies information technologies to solve engineering problems using computer processing methods. Knows how to use computer technologies to process measurement results, and comply with GOST and industry standards.
PO10	Knows and understands contemporary social, political and energy issues.
PO11	Understands the benefits and potential challenges of working in a team, describes the qualities and processes needed to work effectively in a team, and the role of teamwork in the engineering design process.
PO12	Understands the importance of career planning and management.

4.2. The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines

№	Name of the	Brief description of the discipline	Number of			Gener	ated le	arning	outcon	ies (cod	les)	
	discipline	•	credits	PO1	PO2	PO3	PO4	PO5	PO6	PO7	••••	•••••
		Cycle	e of basic disc	ciplines	<u> </u> 							
		•	versity comp	_								
M1	PURPOSE AND OBJECTIVES OF											
	Foreign language	THE COURSE The aim of the course is to		+								
	(professional)	develop students' knowledge of English for										
	(professionar)	their current academic research and to improve										
		the effectiveness of their work in the field of										
		project management. BRIEF DESCRIPTION										
		OF THE COURSE The course is aimed at										
		developing vocabulary and grammar for										
		effective communication in the field of project										
		management and improving reading, writing,										
		listening and speaking skills at the Intermediate										
		level. It is expected that students will acquire										
		and replenish their vocabulary of business										
		English and learn grammatical structures that										
		are often used in the context of management.										
		The course consists of 6 modules. The 3rd										
		module of the course ends with an intermediate										
		test, and the 6th module is followed by a test at										
		the end of the course. The course ends with a										
		final exam.										
		Undergraduates also need to study										
		independently (MIS). MIS - independent work										
		of undergraduates under the guidance of a										
		teacher. KNOWLEDGE, SKILLS, SKILLS										
		AT THE END OF THE COURSE After										
		successful completion of the course, students										
		are expected to be able to recognize the main										
		idea and the main message, as well as specific										
		details when listening to monologues,										

	I	T.,	1		-	-	 	-	-	
		dialogues and group discussions in the context								
		of business and management; understand								
		written and oral speech in English on topics	\$							
		related to management; write management								
		texts (reports, letters, emails minutes of								
		meetings), following the generally accepted								
		structure with a higher degree of grammatical								
		accuracy and using business words and								
		phrases, talk about various business situations								
		using the appropriate business vocabulary and								
		grammatical structures - in pair and group								
3.60		discussions, meetings and negotiations.								
	Management	GOALS AND OBJECTIVES OF THE		+						
	Psychology	COURSE Familiarization of future teachers								
		with the methodological and theoretical								
		foundations of higher school pedagogy,								
		modern technologies of analysis, planning and								
		organization of training and education	,							
		communicative technologies of subject-subject								
		interaction of a teacher and a student In the								
		educational process of a university. BRIEF								
		DESCRIPTION OF THE COURSE								
		The subject of higher school pedagogy.								
		methodology of pedagogical science, aspects								
		and trends in the development of modern								
		education, pedagogical activity, the personality								
		of a higher school teacher, the essence and								
		structure of pedagogical activity, modern								
		requirements for competence, communicative								
		competence of a higher school teacher								
		didactics of higher school, modern pedagogical								
		technologies, the educational process of higher								
		school. active methods and forms of education								
		in the preparation of future specialists.								
		educational work in higher education								
		organization of independent work of students in								
		the conditions of credit technology								
		organization of pedagogical control in the	}							
		conditions of credit technology.								

		KNOWLEDGE, SKILLS, SKILLS AT	1					
		THE END OF THE COURSE To know and						
		understand the current problems of pedagogical						
		science, the laws of pedagogical theories, the						
		essence of pedagogical activity of a university						
		teacher. Master the skills of designing the						
		educational process based on new concepts of						
		teaching and upbringing; creating a creative						
		and developing environment in the process of						
		learning and upbringing. Be competent in						
		solving problems of higher pedagogical						
		education and prospects for its further						
		development; in the application of effective						
		university teaching technologies; the main						
		types of pedagogical communicative						
		interaction, organization and management of						
		students' activities.						
M3	History and	GOALS AND OBJECTIVES OF THE						
	philosophy of science	COURSE To reveal the connection between		+				
	piniosopny of science	philosophy and science, to highlight the						
		philosophical problems of science and						
		scientific cognition, the main stages of the						
		history of science, the leading concepts of the						
		philosophy of science, modern problems of the						
		development of scientific and technical reality	7					
		BRIEF DESCRIPTION OF THE COURSE						
		The subject of philosophy of science, dynamics	,					
		of science, specifics of science, science and						
		pre-science, antiquity and the formation of						
		theoretical science, the main stages of the						
		historical development of science, features of						
		classical science, non-classical and post-non-						
		classical science, philosophy of mathematics,						
		physics, engineering and technology, specifics						
		of engineering sciences, ethics of science,						
		social and moral responsibility of a scientist						
		and engineer						
		KNOWLEDGE, SKILLS, SKILLS AT	,					
		THE END OF THE COURSE To know and						
		understand the philosophical issues of science.						

_	T	T				1	1		1
		the main historical stages of the development of							
		science, the leading concepts of the philosophy							
		of science, to be able to critically evaluate and							
		analyze scientific and philosophical problems,							
		to understand the specifics of engineering							
		science, to possess the skills of analytical							
		thinking and philosophical reflection, to be able							
		to justify and defend their position, to master							
		the techniques of discussion and dialogue, to							
		possess the skills of communicativeness and							
		creativity in his professional activity							
M4	Higher school	PURPOSE AND OBJECTIVES OF		+					
1,11		THE COURSE The course is aimed at studying							
	pedagogy	the psychological and pedagogical essence of							
		the educational process of higher education;							
		forming ideas about the main trends in the							
		development of higher education at the present							
		stage, considering the methodological							
		foundations of the learning process in higher							
		education, as well as psychological							
		mechanisms affecting the success of learning,							
		interaction, management of subjects of the							
		educational process. Development of							
		psychological and pedagogical thinking of							
		undergraduates. BRIEF DESCRIPTION OF							
		THE COURSE							
		In the course of studying the course,							
		undergraduates get acquainted with the							
		didactics of higher education, forms and							
		methods of organizing education in higher							
		school, psychological factors of successful							
		learning, features of psychological impact,							
		mechanisms of educational influence,							
		pedagogical technologies, characteristics of							
		pedagogical communication, mechanisms for							
		managing the learning process. They analyze							
		organizational conflicts and ways to resolve							
		them, psychological destructions and							
		deformations of the teacher's personality.							
	1	bersonand of the teachers personanty.	l						j.

	KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE At the end of the course, a master's student should know the features of the modern system of higher professional education, the organization of pedagogical research, the characteristics of the subjects of the educational process, the didactic foundations of the organization of the learning process in higher school, pedagogical technologies, the patterns of pedagogical communication, the features of							
	educational influences on students, as well as							
	the problems of pedagogical activity.							
	· ·	of basic disc	-					
T-		ctive compo	nent		ı			
Special and special automatic control systems in EE	THE PURPOSE AND OBJECTIVES OF THE COURSE are to train undergraduates by methods of mathematical description of control objects, methods of ACS synthesis using modern technical means. A BRIEF DESCRIPTION OF THE COURSE mastering methods of mathematical description of control objects, methods of ACS synthesis using modern technical means, including VT, methods of automation of individual technical objects and technical lines as a whole. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE familiarization of students with the basic mathematical descriptions of control objects, methods of synthesis of ACS with the use of modern technical means. To develop the ability of undergraduates to effectively solve the problems of rational use of automatic control systems in the electric power industry.Be able to determine the actual state of the object, synthesize its structure, choose the right criterion for controlling the object, synthesize the structure of the control system, evaluate the advantages of the vibrated structure, predict the						+	

	T			1	ı	1	1	ı		1
		behavior of the synthesized control system,								
		remove control, alarm and regulation, evaluate								
		the advantages and disadvantages of the								
		system.								
M6	Optimal and adaptive	PURPOSE AND OBJECTIVES OF THE							+	
	control systems	COURSE The purpose of teaching the								
		discipline "Optimal and adaptive control								
		systems" is to inform undergraduates of								
		knowledge on the analysis of a priori and								
		current information about the properties of an								
		object, the definition of the type of								
		disturbances, the formulation of limiting								
		conditions, target criteria, the main classes and								
		methods of synthesis of optimal and adaptive								
		control systems. As well as the acquisition by								
		undergraduates of skills in calculating and								
		modeling optimal and adaptive control systems								
		for use in production activities related to the								
		operation, configuration and development of								
		control systems and devices of these classes.								
		BRIEF DESCRIPTION OF THE COURSE								
		Basic concepts and definitions of optimal								
		control theory. Formulation of the problem of								
		synthesis of an optimal control system.								
		Definition of an adaptive control system.								
		Formulation of the adaptive control problem.								
		Stages of adaptive system synthesis, basic								
		methods of synthesis of the main circuit and the								
		adapter in direct adaptive control systems.								
		KNOWLEDGE, SKILLS, SKILLS AT THE								
		END OF THE COURSE As a result of								
		mastering the discipline, undergraduates								
		should know: Types of disturbances acting on								
		the control object characteristics of the main								
		classes of adaptive systems, features of								
		methods of synthesis of optimal and adaptive								
		regulators, properties and scope of application								
		of the main types of optimal and adaptive								
		regulators								
	1	1 · Ø · · · · · · ·	ll							

M7 Theory of electromechanical THE COURSE Formation of general scientific knowledge and in-depth professional training for undergraduates based on the study by students of the basics of the theory of electromechanical energy conversion, modern electromechanical systems, methods of mathematical description and modeling of processes of electromechanical energy conversion. BRIEF DESCRIPTION OF THE COURSE The discipline "Theory of electromechanical conversion of electricity", where students study issues related to the basic laws of electromechanical energy conversion, the device and the principle of operation of electromechanical converters. Learn how to calculate electromagnetic forces and electromagnetic moments in electromechanical energy converters. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE Basic methods, where students are the deviced and the state of t			Must be able to: Analyze a priori and current information about the properties of the object; Determine the type of disturbances; Formulate limiting conditions; Define target criteria; Formulate the problem of synthesis of optimal and adaptive regulators; Choose an algorithm for the synthesis of an adaptive system; To carry out the calculation of adaptive regulators to ensure the specified properties of the systems.					
processing information; basic concepts and content of classical sections of electromechanics of basic physical phenomena and laws of mechanics, electrical engineering, energy and their mathematical description; basic methods of experimental studies of	M7	electromechanical	THE COURSE Formation of general scientific knowledge and in-depth professional training for undergraduates based on the study by students of the basics of the theory of electromechanical energy conversion, modern electromechanical systems, methods of mathematical description and modeling of processes of electromechanical energy conversion. BRIEF DESCRIPTION OF THE COURSE The discipline "Theory of electromechanical conversion of electricity", where students study issues related to the basic laws of electromechanical energy conversion, the device and the principle of operation of electromechanical converters. Learn how to calculate electromagnetic forces and electromagnetic moments in electromechanical energy converters. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE Basic methods, methods and means of obtaining, storing and processing information; basic concepts and content of classical sections of electromechanics of basic physical phenomena and laws of mechanics, electrical engineering, energy and their mathematical description;					+

	electrical engineering. The use of modern technical means and information technologies in the professional field; methods of mathematical and physical modeling of modes, processes, states of objects of electric power and electrical engineering analysis of physical phenomena in technical devices and systems. Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion, perform various tasks of analyzing the operation of electromechanical converters using mathematical modeling methods, develop recommendations for optimizing EMF operation modes. Development of design solutions for the execution of electromechanical converters of various applications.					
Reliability in the electric power industry	THE PURPOSE AND OBJECTIVES OF THE COURSE are to form a fundamental knowledge base for undergraduates about the basic concepts, definitions of reliability theory and reliability indicators of electric power systems and installations. BRIEF DESCRIPTION OF THE COURSE basic methods of ensuring and improving reliability; methods of assessing the reliability of elements, maintaining and restoring the operability and resource of power equipment; methods of engineering calculation of reliability of complex systems; methods of testing systems for reliability. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE should know: - basic concepts, definitions and terms from the theory of reliability; - types of failures and their characteristics; - qualitative and quantitative indicators of reliability of objects;			+		

_	ı		1	1	1	1	1	1	1	 1
		- principles of developing mathematical models								
		of reliability in the event of gradual, sudden and								
		joint failures of an object; - principles of								
		reserving elements of complex electric power								
		systems; Must be able to: - calculate the main								
		reliability indicators of electric power facilities;								
		- select and compile optimal reliability systems	3							
		for electric power facilities, as well as analyze								
		their effectiveness.								
M8	Modeling of elements of	PURPOSE AND OBJECTIVES OF					+			
		THE COURSE Familiarization of students	3							
		with the basics of modeling elements of electric								
		power systems (EES) and their mathematical								
		and virtual models, the formation of students								
		skills in simulation modeling of electric power								
		facilities in the MATLAB software								
		environment. BRIEF DESCRIPTION OF THE								
		COURSE The course covers the following								
		main topics: research of operating modes of	1							
		single-phase and three-phase power								
		transformers, research of operating modes of								
		DC machines, research of operating modes of								
		asynchronous machines, synchronous								
		machines, modeling of power lines, load								
		modeling, simulation of switching device								
		ЗНАНИЯ, УМЕНИЯ, НАВЫКИ ПО								
		ЗАВЕРШЕНИЮ КУРСА								
		As a result of mastering the discipline								
		"Modeling in electric power systems", the								
		student will: know: - EES modeling methods; -								
		the principle of operation of the main elements								
		of the EES; - mathematical models of the main								
		EES equipment; - methods for regulating the								
		parameters of the EES mode; be able to: - work								
		in the MATLAB software environment; -								
		calculate the parameters of the main electrical								
		equipment; - collect simulation models of EES								
		objects; - explore the modes of operation of the								
		EES; own: - methods of regulating the								
		EES; own: - memous of regulating the	1							

		parameters of electrical equipment; - skills of working with EES schemes												
			of profile dis		S									
	University component													
M9	Theory and practice of relay protection	THE PURPOSE AND OBJECTIVES OF THE COURSE are to provide undergraduates with knowledge in the field of principles of building relay protection, applied modern calculation methods, basic elements and means of relay protection. The task of studying the discipline is to expand the understanding of the possibilities of relay protection; to consolidate and concretize theoretical material concerning the principles of operation and device of relay protection, their basic properties, methods of application; to acquire skills in calculating the parameters necessary to configure relay protection; the correct choice of methods and means of relay protection; evaluation of the effectiveness and reliability of the selected relay protection. BRIEF DESCRIPTION OF THE COURSE characteristics of relay protection, algorithms of functioning and principles of protection construction and methods of calculation of various RS KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE information, methodological and mathematical support for the implementation of relay protection systems; domestic and foreign experience, as well as development prospects in the field of application of relay protection systems; methods of calculating	versity comp		S						+			
		relay protection systems. To know: - basic concepts, definitions and purpose of relay												
		protection; - requirements for relay protection; - principles of construction of relay protection; - elements and functional parts of relay protection devices; -principles of operation of												

	T		I			1		
		basic protection schemes with relative and						
		absolute selectivity;						
		Must be able to:						
		- calculate the main parameters of relay						
		protection circuits;						
		- select modern elements and relay protection						
		devices, analyze their effectiveness and						
		reliability;						
		- read various electrical circuit diagrams and						
		wiring diagrams of relay protection of electric						
		power systems.						
M10	Scientific and technical	KNOWLEDGE, SKILLS, SKILLS AT THE				+		
IVIIO		END OF THE COURSE The purpose of				1		
	power industry	teaching the discipline is to prepare a specialist						
	power industry							
		to solve the problems of design, research and						
		operation of electric power and						
		electrotechnological installations and systems,						
		able to analyze the efficiency of energy						
		conversion schemes, evaluate the prospects of						
		new methods of energy production and put						
		into practice innovative developments. BRIEF						
		DESCRIPTION OF THE COURSE The						
		discipline covers the following theoretical						
		information about the state of development of						
		modern electric power industry: - structure and						
		functioning of modern power plants of various						
		types and electrical networks;						
		- principles of construction, structure and						
		optimization of the electric power system of an						
		industrial enterprise;						
		- the scale, directions and prospects of energy						
		production and distribution;						
		- methods of obtaining and quality						
		requirements for new types of electrical						
		technology;						
		- regulatory and regulatory and technical basis						
		of energy saving; - fundamentals of energy						
		audit of electric power facilities;						
		- principles of waste-free technology, fuel and						
		energy indicators of waste-free;						

- environmental aspects of energy
conservation. KNOWLEDGE, SKILLS,
SKILLS UPON COMPLETION OF THE
COURSE As a result of studying the
discipline, undergraduates should know:
- on the structure and functioning of modern
power plants and electrical networks;
- about the general principles, structure and
functioning of electric power systems and
networks;
- about the energy characteristics of electrical
processes and installations;
- on the principles of construction, structure
and optimization of the electric power system
of an industrial enterprise;
- about the variety of electrotechnological
processes and installations, about the main
types and classification of electrical
equipment; - on the scale, directions and prospects of
energy production and distribution;
- on the methods of obtaining and quality
requirements for new types of electrical
technology;
- about the regulatory and regulatory and
technical basis of energy saving;
- about the basics of energy audit of electric
power facilities;
- about the principles of waste-free technology,
about fuel and energy indicators of waste-free.
As a result of studying the discipline,
undergraduates should have an idea of:
- the main directions of fundamental research
in electrical power engineering and electrical
technology;
- about the structure and functioning of
various types of power plants and about the
combined generation of electricity and heat at
the CHP;

	I	1 , , , , , , , , , , , , , , , ,		1				
		- about the principles and methods of						
		developing energy saving measures. As a						
		result of studying the discipline,						
		undergraduates must possess:						
		-methods of calculating the energy indicators						
		of electric power plants;						
		- methods of calculating the energy						
		characteristics of electricity production;						
		- methods of calculating the characteristics of						
		energy carriers used in electrotechnological						
		production;						
		- methods of calculating the main						
		characteristics of energy carriers;						
		- methods of optimization of power plants and						
		systems.					 	
M11	Renewable energy	PURPOSE AND OBJECTIVES OF THE				+		
	sources	COURSE						
	Sources	The discipline focuses the knowledge gained in						
		chemistry, biology, physics, and the theoretical						
		foundations of electrical engineering. Carries						
		out their connection with special disciplines,						
		processes and technologies in renewable						
		energy sources, industries. And also shows						
		their connection with special disciplines,						
		processes and technologies for obtaining						
		renewable energy sources from the relevant						
		materials used.						
		BRIEF DESCRIPTION OF THE COURSE						
		The main factors determining the degree of use						
		of any energy source are its estimated reserves,						
		the actual yield of useful energy, cost, potential						
		hazardous environmental impacts, as well as						
		social consequences and impact on the security						
		of the state. Renewable energy sources include						
		hydrogen, bioethanol and biogas artificially						
		obtained from biological waste from						
		agriculture, as well as solar, water, wind, sea						
		waves, tides, and hydroelectric power plants.						
		KNOWLEDGE, SKILLS, SKILLS AT THE						
		END OF THE COURSE In the process of						

		studying the discipline, students should understand the concept of providing electricity consumers, understand the structure of the electric power industry, the relationship between its various links, have an idea of the latest achievements in obtaining renewable energy sources, get an idea of the composition of electricity consumers in various industries.						
M12	Power electronics	PURPOSE AND OBJECTIVES OF THE COURSE Familiarization of undergraduates with the basics of power electronics, with the basic elements of power electronics, about their application in industrial converter devices and the formation of undergraduates' skills to work with them. BRIEF DESCRIPTION OF THE COURSE The course covers the following main topics:power electronic devices; element base and standard components of control systems; converters with network switching; DC-to-DC conversion; controlled converters; pulse width modulation in converters; resonant converters; application of power electronics devices. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE As a result of mastering the discipline "Power Electronics", the student will: know: - the basic element base of power electronics; - the principle of operation and characteristics of the main electronic devices; - device of power converters; - application of power converters; be able to: - read electronic circuits; - carry out basic calculations of power electronic devices; - collect circuits of power converters; - identify malfunctions in converter circuits;					+	

		own:							
		- calculation methods of the most common							
		converter devices;							
		- skills of working with electronic converters.							
		Cycle	of profile dis	scipline	S				
		Co	mponent of o	choice					
M13	Digital electric drive	PURPOSE AND OBJECTIVES OF THE							+
	control systems	COURSE Study of issues related to the choice							•
	oona or oyotomo	of hardware and software, as well as the use of							
		application programs for modeling and analysis							
		of modern digital control systems of electric							
		drives. Know the methods of developing							
		generalized solutions to electric drive							
		problems, analyzing options, predicting							
		consequences, finding compromise solutions in							
		conditions of multi-criteria, uncertainty BRIEF							
		DESCRIPTION OF THE COURSE The							
		discipline "Digital control systems of electric							
		drives", where students study issues related to							
		the choice of hardware and software, as well as							
		the use of a package of application programs for							
		modeling and analysis of modern digital control							
		systems of electric drives. KNOWLEDGE,							
		SKILLS, SKILLS AT THE END OF THE							
		COURSE	1						
		As a result of studying this discipline, a							
		master's student should know the devices,							
		principles of operation and properties of the							
		main elements of microprocessor devices,							
		automation software. Undergraduates will							
		acquire knowledge and practical skills in the							
		development and design of digital control							
		systems for electric drives of industrial							
2.54 :	1001	installations.							
		PURPOSE AND OBJECTIVES OF THE				+			
	of power system modes	COURSE The objectives of mastering the							
		discipline are: the formation of knowledge	1						

about the tasks, structure, features of energy and energy systems, technological features of power systems, about electrical modes and their management capabilities, operational management tasks in the conditions of automated dispatch control systems (ASDS), compatibility of the control systems in the energy sector with biological environments, the formation of skills and abilities to control the modes of power systems, carrying out optimization calculations and analysis of technical and economic indicators of networks; planning and forecasting modes, choosing the optimal composition of operating equipment in the power system. BRIEF DESCRIPTION OF THE COURSE The discipline belongs to the "Professional cycle" of the basic part of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS, AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion.						
power systems, about electrical modes and their management capabilities, operational management tasks in the conditions of automated dispatch control systems (ASDS), compatibility of the control systems in the energy sector with biological environments, the formation of skills and abilities to control the modes of power systems, carrying out optimization calculations and analysis of technical and economic indicators of networks: planning and forecasting modes, choosing the optimal composition of operating equipment in the power system. BRIEF DESCRIPTION OF THE COURSE The discipline belongs to the "Professional cycle" of the basic operation of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS. SKILLS AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,	about the tasks, structure, features of energy					
power systems, about electrical modes and their management capabilities, operational management tasks in the conditions of automated dispatch control systems (ASDS), compatibility of the control systems in the energy sector with biological environments, the formation of skills and abilities to control the modes of power systems, carrying out optimization calculations and analysis of technical and economic indicators of networks: planning and forecasting modes, choosing the optimal composition of operating equipment in the power system. BRIEF DESCRIPTION OF THE COURSE The discipline belongs to the "Professional cycle" of the basic operation of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS. SKILLS AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,	and energy systems, technological features of					
their management capabilities, operational management tasks in the conditions of automated dispatch control systems (ASDS), compatibility of the control system in the energy sector with biological environments, the formation of skills and abilities to control the modes of power systems, carrying out optimization calculations and analysis of technical and economic indicators of networks; planning and forecasting modes, choosing the optimal composition of operating equipment in the power system. BRIEF DESCRIPTION OF THE COURSE The discipline belongs to the "Professional cycle" of the basic part of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical engineering; basic elements of electrical engineering roblems in the field of electromechanical energy conversion,						
management tasks in the conditions of automated dispatch control systems (ASDS), compatibility of the control system in the energy sector with biological environments, the formation of skills and abilities to control the modes of power systems, carrying out optimization calculations and analysis of technical and economic indicators of networks; planning and forecasting modes, choosing the optimal composition of operating equipment in the power system. BRIEF DESCRIPTION OF THE COURSE The discipline belongs to the "Professional cycle" of the basic part of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines, KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical esystems; to draw dup replacement schemes for elements of the power system: Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
automated dispatch control system in the energy sector with biological environments, the formation of skills and abilities to control the modes of power systems, carrying out optimization calculations and analysis of technical and economic indicators of networks; planning and forecasting modes, choosing the optimal composition of operating equipment in the power system. BRIEF DESCRIPTION OF THE COURSE The discipline belongs to the "Professional cycle" of the basic part of the module "Electric Power Engineering." This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS, AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical engineering; basic elements of electrical engineering; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
compatibility of the control system in the energy sector with biological environments, the formation of skills and abilities to control the modes of power systems, carrying out optimization calculations and analysis of technical and economic indicators of networks; planning and forecasting modes, choosing the optimal composition of operating equipment in the power system. BRIEF DESCRIPTION OF THE COURSE The discipline belongs to the "Professional cycle" of the basic part of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE TO successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electronechanical energy conversion,						
energy sector with biological environments, the formation of skills and abilities to control the modes of power systems, carrying out optimization calculations and analysis of technical and economic indicators of networks; planning and forecasting modes, choosing the optimal composition of operating equipment in the power system. BRIEF DESCRIPTION OF THE COURSE The discipline belongs to the "Professional cycle" of the basic part of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
formation of skills and abilities to control the modes of power systems, carrying out optimization calculations and analysis of technical and economic indicators of networks: planning and forecasting modes, choosing the optimal composition of operating equipment in the power system. BRIEF DESCRIPTION OF THE COURSE The discipline belongs to the "Professional cycle" of the basic part of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS, AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
modes of power systems, carrying out optimization calculations and analysis of technical and economic indicators of networks: planning and forecasting modes, choosing the optimal composition of operating equipment in the power system. BRIEF DESCRIPTION OF THE COURSE The discipline belongs to the "Professional cycle" of the basic part of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS, AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical engineering; basic elements of the power system; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
optimization calculations and analysis of technical and economic indicators of networks; planning and forecasting modes, choosing the optimal composition of operating equipment in the power system. BRIEF DESCRIPTION OF THE COURSE The discipline belongs to the "Professional cycle" of the basic part of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,	modes of power systems, carrying out					
technical and economic indicators of networks; planning and forecasting modes, choosing the optimal composition of operating equipment in the power system. BRIEF DESCRIPTION OF THE COURSE The discipline belongs to the "Professional cycle" of the basic part of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE To successfully master the discipline , the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
optimal composition of operating equipment in the power system. BRIEF DESCRIPTION OF THE COURSE The discipline belongs to the "Professional cycle" of the basic part of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE To successfully master the discipline , the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
optimal composition of operating equipment in the power system. BRIEF DESCRIPTION OF THE COURSE The discipline belongs to the "Professional cycle" of the basic part of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE To successfully master the discipline , the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,	1					
The discipline belongs to the "Professional cycle" of the basic part of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
THE COURSE The discipline belongs to the "Professional cycle" of the basic part of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
cycle" of the basic part of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
cycle" of the basic part of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
cycle" of the basic part of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
cycle" of the basic part of the module "Electric Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,	The discipline belongs to the "Professional					
Power Engineering". This discipline is one of the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
the basic ones; it has both independent significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
significance and is the basis for a number of special disciplines. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
special disciplines. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
SKILLS AT THE END OF THE COURSE To successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
successfully master the discipline, the student must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
must: know: laws of electrical engineering; basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
basic elements of electrical systems; to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
to draw up replacement schemes for elements of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
of the power system; Apply and analyze information, solve engineering problems in the field of electromechanical energy conversion,						
information, solve engineering problems in the field of electromechanical energy conversion,						
field of electromechanical energy conversion,						
inertorm various tasks of analyzing the	perform various tasks of analyzing the					
operation of electromechanical converters						
using mathematical modeling methods,						
develop recommendations for optimizing EMF						
operation modes. Development of design						
solutions for the execution of						
electromechanical converters of various						
applications.						

3	h	DVIDDOGE 134D OF THE COURT OF THE	1		1	1	-	1	1	-	
M15	Installation,	PURPOSE AND OBJECTIVES OF THE							+		
	commissioning and	COURSE The purpose of studying the									
	operation of electrical	discipline is the formation of theoretical									
	equipment	knowledge and mastery of organizational and									
		technical issues of rational operation and									
		advanced industrial methods of installation,									
		commissioning, operation and diagnostics of									
		electrical equipment. BRIEF DESCRIPTION									
		OF THE COURSE The discipline "Installation,									
		commissioning and operation of electrical									
		equipment" is a basic subject where students									
		study the accumulated experience of modern									
		methods of organizing and performing work on									
		installation, commissioning and maintenance									
		of electrical installations and automation									
		equipment on the basis of regulatory									
		documents; safety rules, devices and technical									
		operation.									
		KNOWLEDGE, SKILLS, SKILLS AT THE									
		END OF THE COURSE As a result of studying									
		this discipline, a master's student must possess									
		a systematic, integrated approach to solving									
		issues of selection, placement of equipment,									
		installation, commissioning, operation,									
		maintenance and repair, as well as its intended									
		use. Undergraduates will acquire skills in									
		industrial installation, repair and operation of									
		elements of the electric power grid in									
		accordance with the requirements of the rules									
1		of technical operation of electrical installations									
		of consumers, safety regulations for the									
		operation of electrical installations of									
		consumers and the rules of electrical									
		installations.									
	Operation of electric										
M16	power systems and	PURPOSE AND OBJECTIVES OF THE				+					
1,110	networks	COURSE Familiarization with the main tasks				'					
		and organizational issues of technical									
		operation, as well as operational reliability									
		operation, as wen as operational reliability									

	1	1				
issues. Competent planning and						
implementation of preventive maintenance,						
planning and calculation of the number of spare						
parts, as well as ways to improve operational						
reliability. BRIEF DESCRIPTION OF THE						
COURSE The discipline is based on the						
knowledge gained in the courses: electric						
power engineering, electromechanics and						
electrical equipment, electrical machines,						
electrical machines, electrical apparatus, power						
supply of enterprises, electric power networks						
and systems, electrical part of power plants,						
relay protection and automation of power						
supply systems, fundamentals of electrical						
safety.						
saicty. KNOWLEDGE, SKILLS, SKILLS AT THE						
END OF THE COURSE The knowledge						
gained by undergraduates while studying the						
discipline "Operation of electric power systems						
and networks" should provide the final cycle of						
training on the operation of electrical						
equipment of industrial enterprises and						
electrical installations, electric power systems						
and networks, as well as on some issues of						
operational reliability.						
PURPOSE AND OBJECTIVES OF THE		+				
COURSE To prepare a specialist to solve						
problems of design, research and operation of						
electric power and electrotechnological						
installations and systems capable of analyzing						
the efficiency of energy conversion schemes,						
assessing the prospects of new methods of						
energy production and putting into practice						
innovative developments. BRIEF						
DESCRIPTION OF THE COURSE The						
discipline covers the following theoretical						
information about the state of development of						
modern electric power industry: - structure						
and functioning of modern power plants of						
various types and electrical networks; -						

				1		1		1	1
		principles of construction, structure and							
		optimization of the electric power system of							
		an industrial enterprise;							
		- the scale, directions and prospects of energy							
		production and distribution;							
		- methods of obtaining and quality							
		requirements for new types of electrical							
		technology;							
		- regulatory and regulatory and technical							
		basis of energy saving; - fundamentals of							
		energy audit of electric power facilities;							
		- principles of waste-free technology, fuel							
		and energy indicators of waste-free;							
		- environmental aspects of energy							
		conservation. KNOWLEDGE, SKILLS,							
		SKILLS AT THE END OF THE COURSE -							
		ability to identify promising areas in the							
		energy sector							
		- to understand general and particular							
		problems in the energy sector;							
		- read and quote scientific literature;							
		- analyze a scientific publication; - use							
		scientific methods of analysis.							
M18	Monitoring and energy	PURPOSE AND OBJECTIVES OF THE					+		
	audit of energy	COURSE To prepare a specialist to solve							
	complexes	problems of design, research and operation of							
	,	electric power and electrotechnological							
		installations and systems capable of analyzing							
		the efficiency of energy conversion schemes,							
		assessing the prospects of new methods of							
		energy production and putting into practice							
		innovative developments. BRIEF							
		DESCRIPTION OF THE COURSE The							
		discipline covers the following theoretical							
		information about the state of development of							
		modern electric power industry:							
		- structure and functioning of modern power							
		plants of various types and electrical networks;							
		- principles of construction, structure and							
		optimization of the electric power system of an							

	industrial enterprise; - the scale, directions and prospects of energy production and distribution; - methods of obtaining and quality requirements for new types of electrical technology; - regulatory and regulatory and technical basis of energy saving; - fundamentals of energy audit of electric power facilities; - principles of waste-free technology, fuel and energy indicators of waste-free; - environmental aspects of energy conservation. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE COURSE As a result of studying the discipline, the student should know: the elements of accounting and control of energy consumption, the possibilities of energy management and the elements of analysis of investments in energy conservation;					
defense of a master's thesis	The purpose of the master's thesis is to demonstrate the level of scientific / research qualifications of a graduate student, the ability to independently conduct a scientific search, test the ability to solve specific scientific and practical problems, knowledge of the most general methods and techniques for solving them. SHORT DESCRIPTION A master's thesis is a final qualifying scientific work, which is a generalization of the results of an independent study by a master's student of one of the actual					+

problems of a particular specialty of the					
relevant branch of science, having an internal					
unity and reflecting the progress and results of					
the development of the chosen topic. The					
Master's thesis is the result of the research					
/experimental research work of the					
undergraduate conducted during the entire					
period of the undergraduate's studies. The					
defense of a master's thesis is the final stage of					
master's degree preparation. The Master's					
thesis must meet the following requirements:					
 research should be carried out in the work or 					
current problems in the field of electrical					
engineering and electric power industry should					
be solved; – the work should be based on the					
identification of important scientific problems					
and their solution; - decisions must be					
scientifically sound and reliable, have internal					
unity; - the dissertation work must be written					
alone					

APPROVED Imagement Board-ed after & Satpayev At M. Begentnev 2024.

CURRICULUM
of Educational Program on enrollment for 2024-2025 academic year

Educational program 7M07113 - "Electrical and Energy Engineering " Group of educational programs M099 - "Power and Electrical Engineering"

	Form of study: full-time	Duration of	tuoy: 2 year					Allocatio	n of face-to-	face trainin	g based on
					Classroom	SIS	Larrer 2		urse	2 00	urse
Discipline code	Name of disciplines	Cycle	Total amount in credits	Total hours	amount lec/lab/pr	(including TSIS) in hours	Form of control	1 semester	2 semester	3 semester	4 semester
CYCLE O	F BASIC DISCIPLINES (BD)				1 16						
			dule of basic t	raining (u	iniversity con	60	E	3			
LNG213	English (professional)	BDUC	3	90	1/0/1	60	E	3			
HUM214	Management Psychology	BD UC	3	90	1/0/1	60	E		3		
HUM212	History and philosophy of science	BD UC	3	90	1/0/1	60	E		3		
HUM213	Higher school pedagogy	BD UC		neat of c		- 00					
	Terror Control of a second control content		Comp	mean acc							
ERG222	Specific and special automatic control systems in the power industry	врссн	5	150	2/1/0	105	E	5			
ERG221	Optimal and adaptive control systems			a converg	2/0/1						
MNG781	Intellectual property and research			_	2/1/0						
ERG273					2110	0098	124				
ERG272	The theory of electromechanical energy conversion	BD CCH	5	150	2/0/1	105	E	5			
MNG782											
ERG218	Reliability in power industry				2/0/1	105				122	
MNG704	Project Management	BDCCH	5	150			E	0		5	
ERG214	Modeling of elements of electric power systems		20		2/1/0	105					
CYCLE O	F PROFILE DISCIPLINES (PD)							Cabalast			
C I C ELE CO	M-2. Module of spec	ialized trainin	g in electric e	ngineerin	g (university	component,	component	5			
ERG233	Theory and practice of relay protection	PDUC	5	150	2/0/1	105	E	5			
ERG265	Scientific and technical problems of power industry	PD UC	5	150	2/0/1	105	E	,			
ERG269	Renewable energy sources	PD UC	5	150	2/0/1	105	E		5	_	
ERG252	Power electronics	PD UC	5	150	2/1/0	105	E		5		
ERG228	Design of industrial electric drives					100				5	
ERG260	Theory and practice of technical experiment in	PD, CCH	5	150	2/0/1	105	E				
CONTROL OF	the power industry			150	2/1/0	105	E		200		
ERG239	Digital control systems of electric drives ASDC and optimization of the modes of power	PD, CCH	5	150	1/1/1	105	Е		5		
ERG203	samply systems			111111111111111111111111111111111111111	1001	105					
ERG217	Installation, commissioning and operation of eletrical equipment	PD, CCH	5	150	2/1/0	105	Е		5		
encar.	Operation of electric power systems and	3.502.4.50		150	100,000	29687					
ERG241	networks										
ERG206	High-voltage electrical technologies and equipment	PD, CCH	5	150	2/0/1	105	E			5	
ERG246	Modern high voltage equipments										
ERG247	Energy management system according to international standards	NO. 0011	5	150	1/1/1	105	Е			5	
20000000	Monitoring and energy audit of power	PD, CCH	3	130	2/0/1	105				17561	
ERG256	complexes					100					
	NAME OF TAXABLE PARTY.		M-3. Practic	ce-oriente	d module					8	
AAP273	Pedagogical practice	BD UC	8			-					8
AAP269	Research practice	PD UC	8		and an extension						0
			1-4. Experime	ntal rese	arch module						
AAP268	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	4					4			
AAP268	Research work of a master's student, including internahip and completion of a master's thesis	RWMS UC	4						4		
AAP251	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	2							2	
AAP255	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	14 M-S. Module								14

ECA212 Preparation and defense of a master's thesis	FA	8		8
Total based on UNIVERSITY:			30 3	10 30 30

	Number of credits for the entire period o	fstudy							
		Credits							
Cycle code	Cycles of disciplines		university component (UC)	choice (CCR)	Total				
BD	Cycle of basic disciplines			15	35				
PD	Cycle of profile disciplines		20	25	53				
	Total for theoretical registros	0	44	40	88				
	RWMS		-		24				
FA.	Final attestation	12			8				
	TOTAL:	12	44	40	129				

Decision of the Academic Council of Kazntu named after K.Satpayev, Protocol No. 14 " 24" 04 2024 v.

Decision of the Educational and Methodological Council of Kazntu named after K.Satpayev, Protocol No 6 "14" 04 2024 y.

Decision of the Academic Council of the Instituteof Energy and Mechanical Engineering. Protocol No 4 " 11" 0/ 2024 y.

Vice-Rector for Academic Affairs

Director Institute of Energy and Mechanical Engineering

Department Head «Power Engineering»

Specialty Council representative from employers

R.K. Uskenbayeva

K.K. Yelemessov

Ye.A. Sarsenbayev

G.E. Abdykalykov